

Comparison of a Monocyte Activation Test based on fetal bovine serum and on human AB serum

Eelo Gitz, PhD

Pharmalab, Neuss, 12 November 2019

RESEARCH | DIAGNOSTICS | PHARMACEUTICALS

Topics of the presentation

- Performance of a cryopreserved PBMC-based Monocyte Activation Test (MAT) using fetal bovine serum (FBS) or human AB serum as cell culture supplement
- Case study of analyzing a drug product using FBS or human AB serum as supplement for the MAT assay
- What source of serum to use for the MAT?

Pyrogen testing

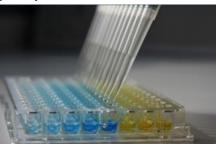
- All parenteral administered pharmaceutical products must be free of pyrogenic (fever-inducing) contamination
- Classification of pyrogens:
 - Non-endotoxin pyrogens → ✓ Components from gram-positive bacteria
 ✓ Yeasts & molds
 ✓ Viruses
 Endotoxins → ✓ Components from gram-negative bacteria: Lipopolysacharide (LPS)

Pyrogen test vs endotoxin test

Pyrogen tests

Rabbit Pyrogen Test (RPT)

~ 400.000 per year (worldwide)


Endotoxin tests

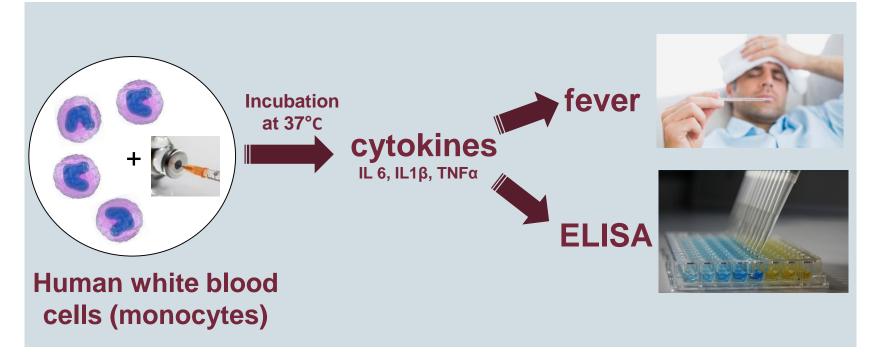
(LAL)

Limulus Amoebocyte Lysate Test

Recombinant factor C (rFC)

- ~ 500.000 per year (USA)
- ~15% mortality rate
- ~ 400.000 per year (Asia)
- Used for consumption after bleeding

Monocyte Activation Test (MAT)

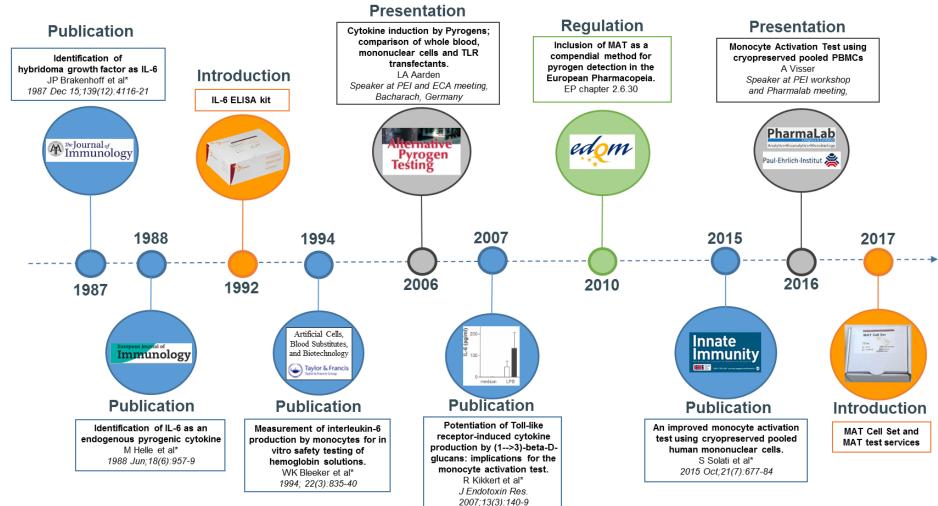

Comparison of pyrogen tests

Pyrogen tests		RPT	BET	МАТ
Non-animal, human-based test		-	-	•••
Detection of endotoxin		•	•••	••
Detection of Non-Endotoxin Pyrogens (NEPs)	Human- specific NEP	-	-	•••
	Bacteria	••	-	•••
	Yeasts & molds	••	-	•••
	Viruses	•	-	•••

Monocyte Activation Test:

The human(e) in vitro alternative to the RPT

Sanquin


"Together with the donor, we ensure a better life for patients"

- Turnover 448 M euro
- 410,000 whole blood donations
- 310,000 plasma donations

Sanquin and MAT

* Research group of Prof Lucien (L. A.) Aarden

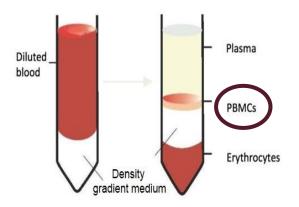
Sanquin MAT kits Reagents for performing MAT

MAT Cell Set

3 vials MAT qualified cryopreserved pooled PBMCs (for 3 plates)

3 vials dedicated culture medium supplement

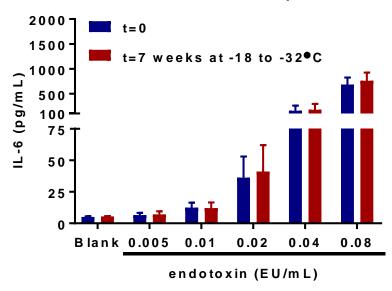
PeliKine IL-6 compact kit


Reagents for IL-6 ELISA (3 plates)

Certification - ISO 13485:2016

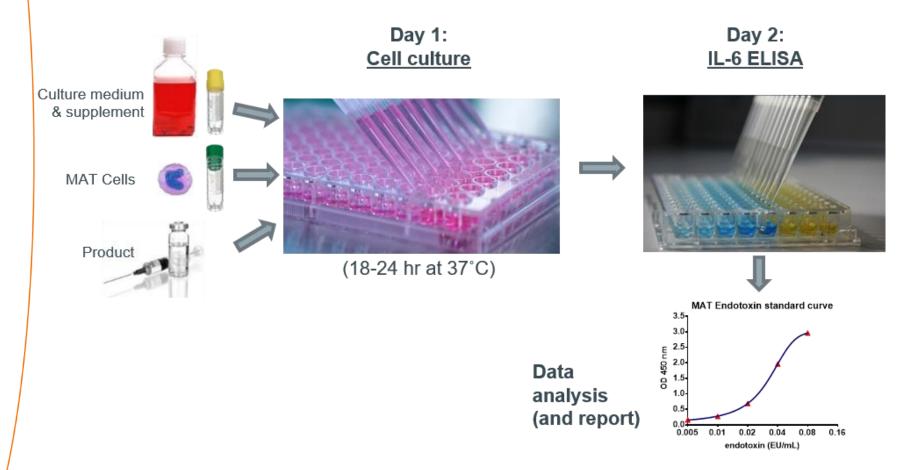
Why cryopreserved pooled PBMC* as cell source?

- Comparable reactivity to fresh PBMC
- Available on demand
 - No need take blood and isolate cells prior to each experiment
- Pool of 4 donors takes donor variation into account
- Stable (months at -80°C, years in *liquid* N₂)
- Shipment possible
- Production and extensive qualification of large batches with consistent quality possible

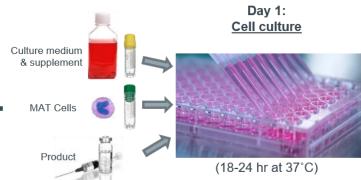

*Peripheral Blood Mononuclear Cells

Why IL-6 as cytokine read-out?

- Demonstrated clinically significant role in fever: Rises in IL-6 levels correlate significantly with rises in body temperature¹⁻⁵
- High sensitivity
- Fully secreted into the medium
- Stable in (frozen) supernatant


¹Helle M, Eur J Immonol. 1988
²Engel A, Infection 1994
³Cartmell T, J Physiol. 2000
⁴Haarbrink M, The Journal of Infectious Diseases, 2000
⁵Spittler A, Clinical Infectious Diseases, 2000

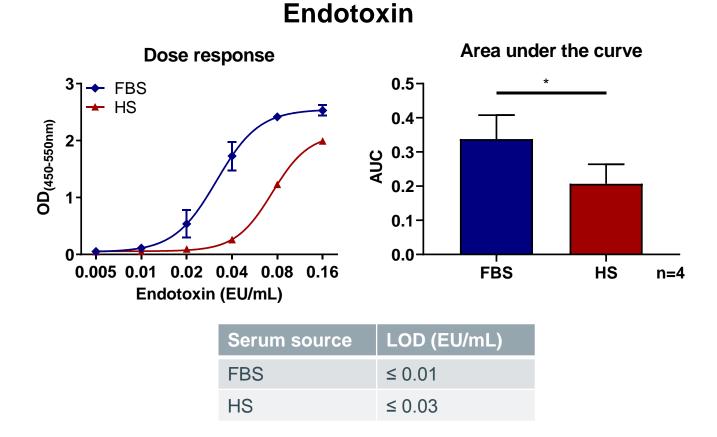
IL-6 ELISA on MAT supernatant



Overview assay procedure

- Monocytes are usually cultured in the presence of serum as a source for growth factors and other proteins
- Current MAT assay at Sanquin was historically developed and validated using FBS as serum source
- European Pharmacopoeia chapter 2.6.30 states the following:

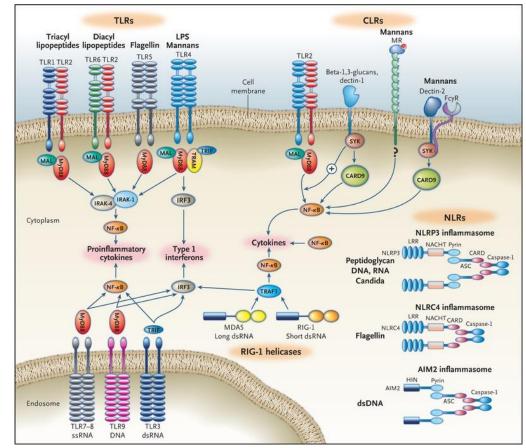
"PBMC or monocytic cell lines, in culture medium and with <u>either the donor's own</u> <u>plasma or AB serum</u>, are typically used at a final cell density of 0.1-1.0 × 10⁶ cells per well, tube or other receptacle. For monocytic cell lines, <u>heat-inactivated foetal</u> <u>bovine serum</u> may be substituted for AB serum."


Aim of this study

To compare the performance of a cryopreserved PBMC-based Monocyte Activation Test (MAT) using fetal bovine serum (FBS) or human AB serum (HS) as cell culture supplement

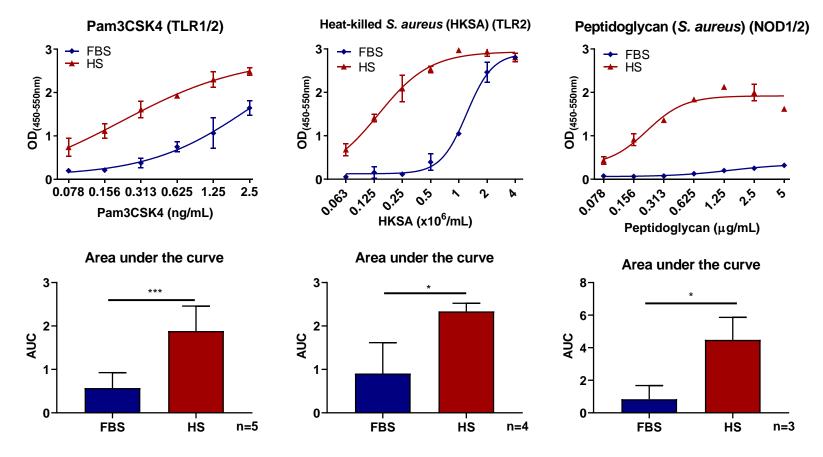
- Reactivity towards endotoxin and non-endotoxin pyrogens
- Consequences of serum heat-inactivation
- Case study: Testing of a pharmaceutical product

FBS vs HS as serum source in the MAT: reactivity towards endotoxin

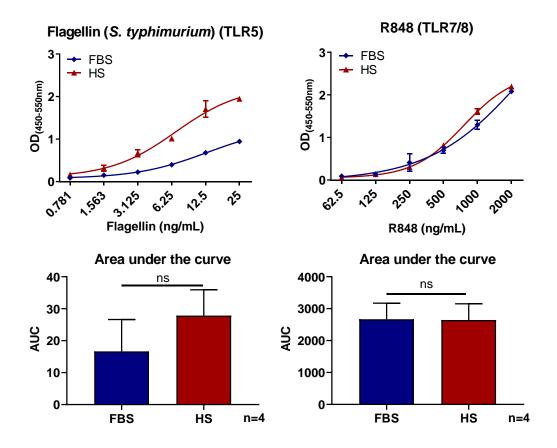

 \rightarrow Lower reactivity with HS

Pattern recognition receptors (PRRs) alert the immune system to the presence of microbial infections

- Pyrogens are detected by different PRRs:
 - Toll-like receptors, e.g.:
 - Endotoxin
 - Flagellin


Sanquin

- Triacylated lipopeptides (Pam3CSK4)
- R848 (Resiquimod)
- NOD like receptors, e.g.:
 - Peptidoglycan
- C-Type lectin receptors, e.g.:
 - Beta-glucan
- RIG like receptors
- Cytosolic DNA Sensors


FBS vs HS as serum source in the MAT: reactivity towards non-endotoxin pyrogens (NEP) (1)

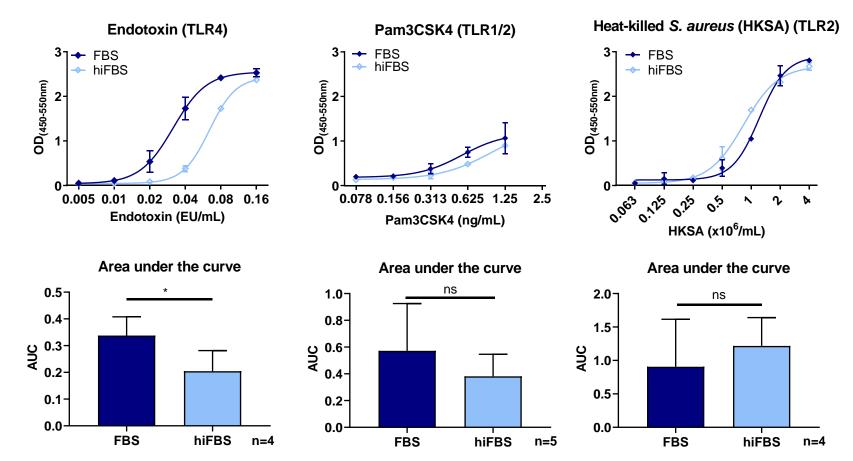
 \rightarrow Higher reactivity with HS

FBS vs HS as serum source in the MAT: reactivity towards non-endotoxin pyrogens (NEP) (2)

 \rightarrow Comparable reactivity

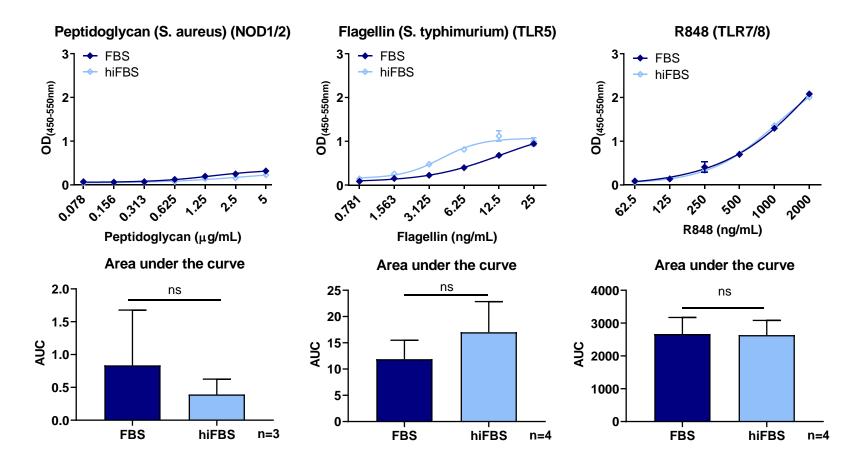
Conclusions (1)

- Use of HS results in lower reactivity towards endotoxin compared to FBS
 - Higher Limit of Detection
 - Lower area under the curve
- Use of HS results higher reactivity towards most tested NEPs
 - Pam3CSK4 → Higher
 - HKSA → Higher
 - Peptidoglycan \rightarrow Higher
 - Flagellin → No significant difference
 - R848 \rightarrow No significant difference

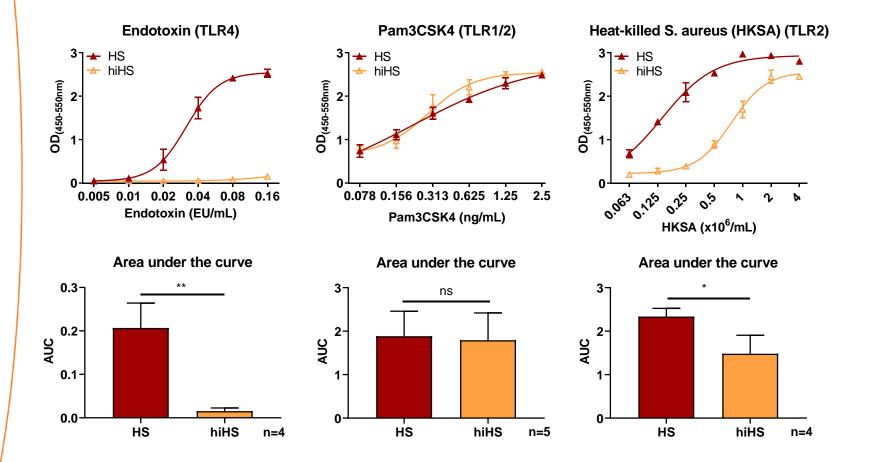


Heat-inactivation of serum

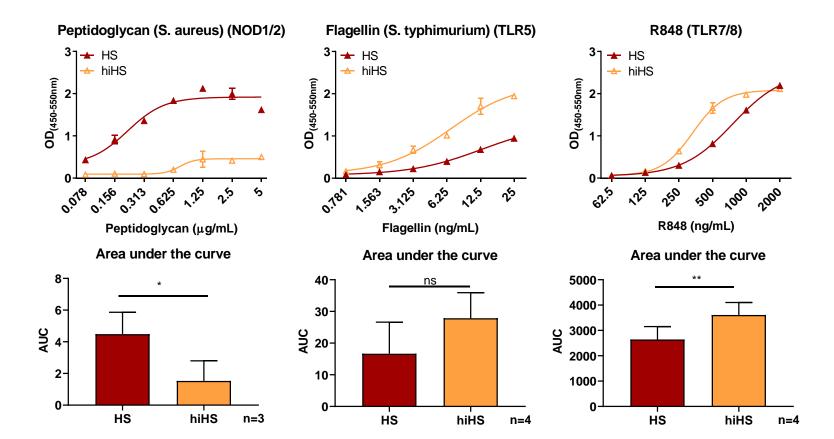
- Heat-inactivation (heating to 56°C for 30 minutes) of serum is usually done to:
 - inactivate complement, a group of proteins present in sera that are part of the immune response.
 - Destroy mycoplasma in serum. However, because most serum suppliers filter through 0.1 µm filters to remove mycoplasma before distribution, this is not usually necessary.
- Serum is often heat-inactivated without any evidence of beneficial effect, simply because an earlier protocol calls for such action
- Heat inactivation also reduces or destroys serum growth factors and should only be performed when there is a compelling reason



Heat-inactivation of FBS: Reactivity towards pyrogens (1)



Heat-inactivation of FBS: Reactivity towards pyrogens (2)



Heat-inactivation of HS: Reactivity towards pyrogens (1)

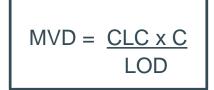
Heat-inactivation of HS: Reactivity towards pyrogens (2)

Conclusions (2)

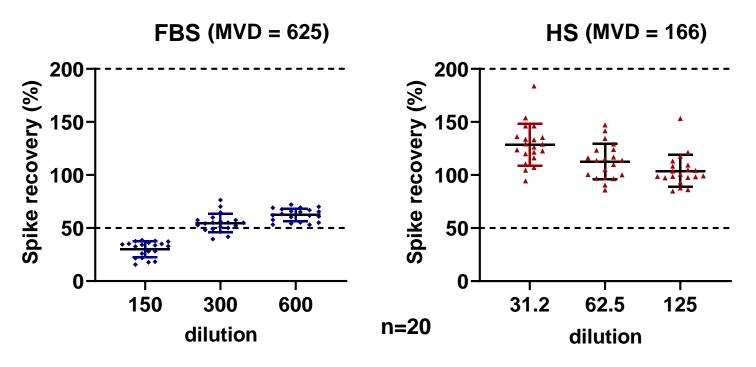
- Heat-inactivation of FBS:
 - Results in reduced reactivity towards endotoxin
 - No significant effects on reactivity towards NEPs
- Heat-inactivation of HS:
 - Results in almost complete loss of reactivity towards endotoxin
 - Varying effects on reactivity towards NEPs:
 - Pam3CSK4 → no effect
 - HKSA \rightarrow Lower
 - Peptidoglycan \rightarrow Lower
 - Flagellin \rightarrow no effect
 - R848 → higher

FBS vs HS as serum source: Product testing

 MAT using HS as cell culture supplement results in a higher limit Of Detection (LOD), thereby reducing the Maximum Valid Dilution (MVD) of a product:


 $MVD = \underline{CLC \times C}$ LOD

- Maximum Valid Dilution (MVD): The maximum allowable dilution of a sample at which the contamination limit can be determined.
- CLC = contaminant limit concentration
- C = concentration of test sample


Case study: Analyzing a blood-derived product in the MAT using FBS or HS as serum source

- Product is known to cause interference
- CLC of the product = 5
- LOD of FBS-based MAT = 0.008
 - MVD therefore is 625
- LOD of HS-based MAT = 0.03
 - MVD therefore is 166

FBS vs HS as serum source in the MAT: Results of endotoxin spike recovery of the product

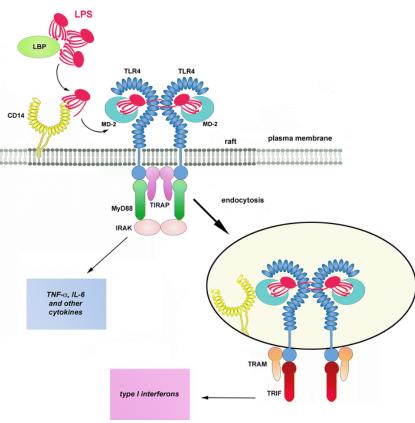
- \rightarrow Valid spike recovery (50-200%)
 - → Product tested in MAT based on FBS requires \geq 300x dilution
 - → Product tested in MAT based on HS requires \geq 31.2x dilution

Conclusions (3)

 Product can be tested at lower dilutions in the HS-based MAT assay compared to the FBS-based one to have valid spike recoveries

Summary

 MAT based on HS shows in most cases higher reactivity towards NEPs but lower reactivity towards endotoxin compared to the FBS-based MAT

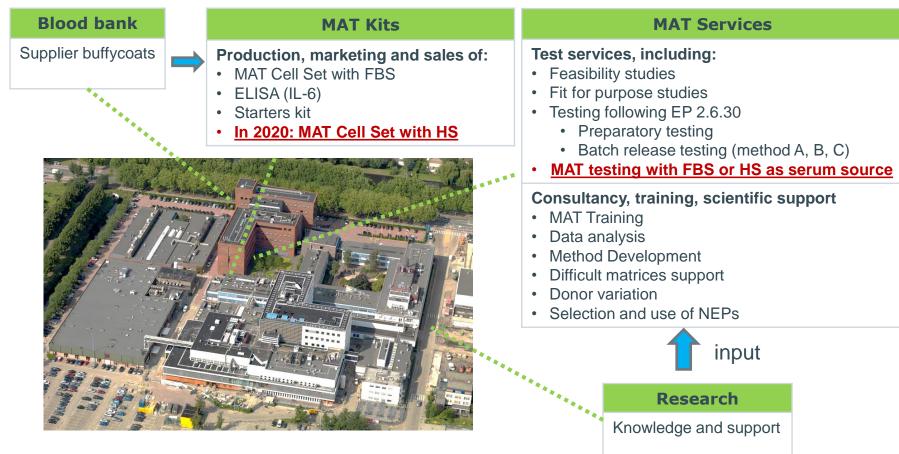

Consequences of heat-inactivation

- FBS
 - Results in reduced reactivity towards endotoxin
 - No significant effects on reactivity towards NEPs
- HS:
 - Results in almost complete loss of reactivity towards endotoxin
 - Varying effects on reactivity towards NEPs:
- Product testing using the FBS- or the HS-based MAT assay
 - Although the HS-based system has a higher LOD for endotoxin, the product required lower dilution compared to the FBS-based MAT to have valid spike recoveries

Discussion

- Why would the MAT based on HS show lower reactivity towards endotoxin?
 - Differences in LPS-binding protein (LBP) content
 - Differences in serum lipoprotein (e.g. LDL, VLDL) content (have been shown to inactivate LPS^{1,2}
 - Presence of anti-LPS antibodies
- Why would heat-inactivation reduce reactivity towards endotoxin?
 - Heat sensitivity of LBP³
- Valid spike recoveries at lower dilutions for a blood-derived product with the HS-based MAT
 - Inhibiting factor already present in HS?

- 1) Berbee JF, J Endotoxin Res 2005
- 2) Wendel M, Intensive Care Med 2007
- 3) Meszaros K, Infection and Immunity 1995



What source of serum to use for the MAT?

- Depends on the type of product
 - HS-based MAT would be preferred for blood/plasma-derived products (Valid spike recoveries at lower product dilutions)
 - FBS-based MAT may be more suitable for testing vaccines, especially vaccines against diseases for which the donor of the HS may already have antibodies
- If the highest sensitivity towards endotoxin is required, FBS may be the best choice
- For the highest sensitivity towards NEPs, HS may be the best choice
- Avoid heat-inactivated serum, especially when using HS

Sanquin's MAT Center of Expertise

Everything under the same roof

Acknowledgements

MAT test services

MAT Kits Astrid Visser John Voorn Cyrill Zwakke Elisa Teunissen Menno Bouwman Renaldo van Vollevelde Kees Keuning Elsemieke Hackenitz

MAT Services Marijke Molenaar-de Backer Maarten Koot Paulien Doodeman Rita Ramdas Fereshte Rezai

Blood bank Susan Cuvalay Marcia van den Eijnden

.....

Blood collection

Research

Anja ten Brinke Miranda Dieker-Meijer Tineke Jorritsma Lucien Aarden

The Monocyte Activation Test

The human(**e**) alternative to the Rabbit Pyrogen Test

For information and contact:

SanquinMAT Kits & ServicesE-mail:mat@sanquin.nlTel:+31 20 512 3599Website:www.sanquin.org/mat